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Motivations




On the threshold of a dream ...

Unigue moment in history of civilizations!

Understanding brains => computer models
=> Al algorithms/applications => cognitive systems
=> brain optimization and enhancement.

* Global brain initiatives.

°* Mind/Brain basics, networks.
* Simulation of neurodynamics.
Fingerprints of real mental activity.
Dynamic functional brain networks.

Potential applications.

Final goal: Use your brain to the max! Optimization of brain processes?

Duch W. (2012) Mind-Brain Relations, Geometric Perspective and
Neurophenomenology, American Philosophical Association Newsletter 12(1)
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Meta-learning, or learning by search in the model space for useful composition of fine-
grained transformations, support feature extraction, novel transfer functions, interesting
distributions as new targets for learning and many deep ideas, not simple improvements.

WD: Machine Learning topics


https://www.is.umk.pl/~duch/cv/WD-topics.html

Superhuman Al in many domains

“w wins in Go; 2017-AlphaGo reaches super-human level.

Perception: face recognition, personality, criminal, sexual,
political, religious orientation, general image recognition.

~ Strategy and planning: 2017-OpenAl wins in Pokera and
strategic games Dota 2; 2019-Starcraft ll, ... military?

] Science: 2015-Al Reverse-Engineers Planarian Regeneration
regulatory networks. 2020-AlphaFold 2 for protein folding.

Robotics: 2020 backflip and parcour by Atlas robot, from
Boston Dynamics, autonomic vehicles on roads.

Creativity and imagery: AIVA and other Al composers,
DeepArt and painting programs.

Language: 2011-I1BM Watson wins in Jeopardy (Va Banque);
2018—-Watson Debater wins arguing with philosophers, 2020:
BERT answers 100.000 SquAD questions, superhuman level.

Cyborgs: BCl, optimization of human brains is coming ...




AGI| and BICA

Build causal models. Understanding the
brain from engineering perspective =
build a model of the brain showing
similar functions.

AGI = Artificial General Intelligence,
learn many different tasks (2008).

BICA (Brain-Inspired Cognitive
Architecture) for flexible intelligence.

Duch, Oentaryo, Pasquier,
Cognitive architectures: where do
we go from here?

“We’ll never have true Al without
first understanding the brain”
Jeff Hawkins (2020).
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https://fizyka.umk.pl/publications/kmk/08-AGI.html

Al for Neuroscience
&
Neuroscience for Al

Irina Rish
Al Foundations
IBM T.J. Watson Research Center



https://www.slideshare.net/SessionsEvents/ai-for-neuroscience-and-neuroscience-for-ai

Neuroscience <~ Al

Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M. (2017).
Neuroscience-Inspired Artificial Intelligence. Neuron, 95(2), 245—-258.
Collaboration of: Google DeepMind, Gatsby Computational Neuroscience, Institute of
Cognitive Neuroscience, Uni. College London, Uni. of Oxford.

Artificial neural networks — simple inspirations, but led to many applications.
Bengio, Y. (2017). The Consciousness Prior. ArXiv:1709.08568.
Amoset al. (2018). Learning Awareness Models. ArXiv:1804.06318.

Al Systems inspired by Neural Models of Behavior:

(A) Visual attention, foveal locations for multiresolution “retina
prediction of next location to attend to.

(B) Complementary learning systems and episodic control: fast learning hippocampal
system and parametric slow-learning neocortical system.

(C) Models of working memory and the Neural Turing Machine.

III

representation,

(D) Numenta Hierarchical temporal memory (HTM), Jeff Hawkins theory of the
neocortex, new book (3/2021) ,,A thousand brains” with more ideas.



https://en.wikipedia.org/wiki/Hierarchical_temporal_memory
https://en.wikipedia.org/wiki/Hierarchical_temporal_memory

Al Neuroscience

Machine learning techniques are basic tools for analysis of neuroimaging data.

Ideas from animal psychology helped to give birth to reinforcement
learning (RL) research. Now key concepts from RL inform neuroscience.

Activity of midbrain dopaminergic neurons in conditioning paradigms has a striking
resemblance to temporal difference (TD) generated prediction errors -
brain implements a form of TD learning!

CNN < interpret neural representations in high-level ventral visual stream of humans
and monkeys, finding evidence for deep supervised networks.

LSTM architecture provides key insights for development of working memory, gating-
based maintenance of task-relevant information in the prefrontal cortex.

Random backward connections allow the backpropagation algorithm to function
effectively adjusting forward weights and using backward projections to transmit useful
teaching signals.



WEE: 4th Industrial Revolution driven by Al/neuro
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https://www.weforum.org/

Medical: brain disorders are costly

H EAVY B u H D E N ADDICTION Direct health-care costs [

Six categories of illness account for more than B E277 bn Direct non-medical costs
half of the costs of brain disorders in Europe. *| W €136 bn ' (ndirect costs

Indirect costs — such as working time lost to
illness — are responsible for about 40% of the
total financial burden.
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BRAIN

INITIATIVE IEEE
lEE E Join the IEEE
Brain Community
JOIN FREE

Human Brain Project, EU Flagship, and Obama BRAIN Initiative (2013):
Brain Research through Advancing Innovative Neurotechnologies.

Total cost of brain disorders in EU estimated in 2010: 798 billion €/year,
and in China far greater!

IEEE wants to “Develop new technologies to explore how the brain’s cells and
circuits interact at the speed of thought, ultimately uncovering the complex links
between brain function and behavior. Explore how the brain records, processes,
uses, stores, and retrieves vast quantities of information.

Help bring safe and effective products to patients and consumers.”

This is joint effort of many IEEE Societies.



Neuro

ancf Informatics 2019

International Neuroinformatics Coordination Facility (INCF.org):

“Neuroinformatics is a research field devoted to the development of neuroscience data
and knowledge bases together with computational models and analytical tools for
sharing, integration, and analysis of experimental data and advancement of theories
about the nervous system function.”

INCF is coordinated by Karolinska Institutet, Stockholm: 18 countries, 120 institutions.
Polish INCF node: IBD PAN im. Nenckiego, since 2017 in our group (T. Piotrowski).

12th INCF Congress on Neuroinformatics & INCF Assembly, Warsaw 9/2019.
Neuroimaging, computational neuroscience, Al/ML.

We were hoping that Poland will join INCF as a full member INCF but ... PoPRM

Polish Brain Council was established by Neuropozytywni Foundation in 2013,

BRAIN PLAN

but “Brain Plan for Poland” has not been finished till now. *; | G


https://neuropozytywni.pl/brain-plan-dla-polski

In search of the sources
of brain's cognitive activity

Project ,, Symfonia”, 2016-21
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Neuroinformatics

Al << Neuroscience
Simulations of Neurodynamics




Multi-level phenomics

time scales

NIMH: mental disorders result from =Y

deregulation of large brain systems. (')
Use Research Domain Criteria (RDoC) :
matrix based on multi-level
neuropsychiatric phenomics. centjmeres

days
(107

Include influence of genes, molecules,
cells, circuits, physiology, behavior,
self-reports on network functions.

minutes
(107}

Decompose neurodynamics into - £
activity of large-scale networks, B & E
related to various brain functions. TR, Y milleconds
M. Minsky, Society of mind (1986) ,
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Mental state: strong coherent activation




Psychological constructs
are necessary to talk
about mental states.

Sensorimotor systems
added in Jan. 2019
as sixth brain system.

This is the basis of
computational
psychiatry.

How are these functions
implemented in the
brain?

RDoC

i Research Domain Criteria Initiative

DOMAINS

Constructs

COGNITION

. *Working
*Perception i
P Mem *Attention

Thoughts
Behavior
Affect




Brains <& Minds

Define mapping S(M)<>S(B), as in BCI.
How do we describe the state of mind?
Verbal description is not sufficient unless words are
represented in a space with dimensions that measure
different aspects of experience.

Stream of mental states, movement of thoughts
< trajectories in psychological spaces.

Two problems: discretization of continuous
processes for symbolic models, and

lack of good phenomenology — we are not able
to describe details of our own mental states.

Neurodynamics: bioelectrical activity of the
brain, neural activity measured using
EEG, MEG, NIRS-OT, PET, fMRI ...

E. Schwitzgabel, Perplexities of Consciousness. MIT Press 2011.



Large-Scale Networks

o

Negative affect

NIMH: mental disorders result from ACC/MPFC
deregulation of large brain systems.
Use Research Domain Criteria (RDoC)
matrix based on multi-level

neuropsychiatric phenomics. . DeC

Insula Insula

Amygdala  Amygdala

Include influence of genes, molecules, YT

Serotonin Cognitive

therapies

therapies, TMS inhibitors, DBS

) ©
Ce”Sr circuits, thSiOlOgy, behaVior, w self context Il reuptake w behavioural

self-reports on network functions.

Decompose neurodynamics into w , ; 2

e Positive affect Attention Cognitive control
activity of large-scale networks, JACENMPFC sREC S SiPre
related to various brain functions. | LPFC
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Al Agent = subnetwork implementing

specific function.
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Precuneus

?
How many: From 7 to Dopamine- Attention ® (ognitive

noradrenaline training, training, TMS
reuptake stimulants
inhibitors




~ Small worlds architecture

Physiological Reviews®© 2020 american_

All complex functions are based on synchronization of activity among many brain areas.
Memory, personality or consciousness are collection of functions, like multi-agent
systems or the “society of mind”. Psychological constructs should be “deconstructed”
to connect them with specific brain processes.



Neurocognitive Basis of Cognitive Control

Networks

FPN (fronto-parietal)
- CON (cingulo-opercular)
. SAN (salience)
. DAN (dorsal attention)
" VAN (ventral attention)

B OMN (default-mode)

Motor & somatosensory

Central role of fronto-parietal (FPN) flexible hubs in cognitive control and adaptive

implementation of task demands.
Black lines=correlations significantly above network average. From Cole et al. (2013).



Frames, capsules and metastable attractors

Simplification of neurodynamics, model of brain/mental states.

My proposal: Feature Space Mapping neurofuzzy model (1995).
Neurodynamics: characterization of basins of attractors and transitions.
Kozma/Freeman: cinematic theory, metastable states in dynamical systems.
Hawkins: frames, grid cells, cortical columns, sequence learning in HTM.
Hinton: capsule networks for image segmentation and recognition.

A S e ———- Object Capsule Autoencoder Figure 1: __Sla_lck::_cl Cap:mle Au-
(a) toencoder (SCAE): (a) part cap-
infer (b) ! sules segment the input into parts
arts 3 explain L : e .
&F‘ | Doses .. and their poses. The poses are
D585 .
P I . then used to reconstruct the input
C? X ~ by affine-transforming learned
templates. (b) object capsules try

: | ~ * to arrange inferred poses into ob-
|

reassemble . . .
- jects, thereby discovering under-

v |£_ o S i lying structure. SCAE is trained

: ‘ - | likelihood X e e . . )

image ,...-ﬂ] G by maximizing image and part

Hikelihood /AR log-likelihoods subject to sparsity
templates (learned) constraints.




Simulations of neurodynamics




Model of reading & dyslexia

Learning: mapping one of the 3 layers to the other two, LEABRA algorithm.
Fluctuations around final configuration = attractors representing concepts.

How to see trajectory of neurodynamics, attractor basins, transitions?
Genesis simulator offers more detailed neuron models, but is harder.

Emergent neural simulator:

Aisa, B., Mingus, B., and O'Reilly, R.

The emergent neural modeling system.
Neural Networks, 21, 1045, 2008.

Point neurons with 3 kinds of ion channels.

3-layer model of reading:

orthography, phonology, semantics =
distribution of activity over

140 microfeatures defining concepts.
Hidden layers OS/OP/SP_Hid in between.

inoaraphy OFP_HFd FPhonology

In the brain: microfeature = subnetwork. Srysiesdaiiet Valusteict




Semantic layer

Semantic layer in our simulations has 140 units.

Here activity for the word “case” is shown, upper 70 units code abstract
microfeatures, lower physical properties. Representation is sparse.
Concepts/words are identified by a pattern of active features.
Associations = transitions between patterns, can be formed in many ways.




Fecurrence Plat (flag)
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Transitions to new patterns that share some active units
(microfeatures); in recurrence plots attractor basins are seen.



Trajectory visualization

Recurrence Plot Multidimensio
1800
1600
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Recurrence plots and MDS visualization of trajectories of the brain activity.

Here evolution of 140-dim semantic layer activity during spontaneous associations
in the 40-words microdomain is presented, starting with the word “flag”.
Trajectories may be displayed using tSNE, UMAP, MDS or our FSD visualization.



Trajectory in 2D

Stochastic Neighbor Embedding (tSNE) visualization, “from thought to thought”.




Viser toolbox

VISER Toolbox HOME FEATURES EXAMPLES DOWNLOAD DocC TEAM COMTACT

|.|5.I.l| np”psn POP |Mm||&wmm||ms&nnmn

Respiratory Rythm Generator Lore:ini_ A.I;'?c':réi_l_:tor i Orbits swap in Lorenz Dow Jones Stock Index
HE Aktractor

Cyclic Movements Model Long simulation of Dyslexia Model of Word Reading and Lorenz Attractor

Viser toolbox (Dobosz, Duch) for visualization of time series data, including our
Fuzzy Symbolic Dynamics (Neural Networks 23, 2010) approach.



http://fizyka.umk.pl/~kdobosz/visertoolbox/
http://fizyka.umk.pl/~kdobosz/visertoolbox/

Typical Development vs. Autism

Activation in Semantics layer [dyslex. proj] Activation in Semantics layer [dyslex praj]
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Trajectories show activation of 3 Gaussian functions (Gi(t),G2(t),Gs(t)).
Neurodynamics depends on properties of single neurons, noise in the system.

Start from “flag”. Parameter b_inc_dt is related to voltage-dependent leak channels
that determines depolarization of neurons, b_inc_dt = 0.01 in normal case vs.
b_inc_dt =0.005, long trapping times and a few states, slow Hebbian learning.




Typical Development vs ADHD

Activation in Semantics layer [dyslex. proj] Activation in Semantics layer [dyslex.praj]
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Trajectories show activation of 3 Gaussian functions (Gi(t),Ga(t),Gs(t)).
Neurodynamics depends on properties of single neurons, noise in the system.

Start from “flag”. Parameter b_inc_dt is related to voltage-dependent leak channels
that determines depolarization of neurons, b_inc_dt = 0.01 in normal case vs.
b_inc_dt =0.02, short trapping times and a many states, slow Hebbian learning.




Simulations of rapid stimulation in autism

Normal speed fast presentation
skipping some words, more complex internal states

no associations some associations arise (off-diagonal)



Conspiracy views

Rapid learning without integration with basic world view leds to twisted views, wrong
associations. Simple explanations save mental energy, creating ,,sinks” that attract
many unrelated episodic memory states.




Memoids ...

Totally distorted world view,
mind changed into a memplex ...

Ready for sacrifice.



EEG and neurodynamics



Brain Fingerprinting

Find unique patterns of brain activity
that should help to identify:

e brain regions of interest (ROI)

e active neural networks

e mental states, tasks.

Several approaches:

1. Microstates and their transitions
(Michel & Koenig 2018)

2. Reconfigurable task-dependent modes
(Krienen et al. 2014)

3. Contextual Connectivity
(Ciric et al. 2018)

4. Spectral Fingerprints
(Keitel & Gross 2016)

5. A few more ...

Normalised power [a.u.]
N

o

-

Spectral Fingerprint
ROI 81 Inferior Parietal Lobule
(Frontoparietal Network)

* 1 - Duration=83.7 %
2 - Duration=47.3 %

e
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EEG microstates for diagnostics

Global EEG Power A O B Schematic Controls vs, SCZ
\ A | B ' . ... a )
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Microstates and their sources

Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the temporal
dynamics of whole-brain neuronal networks: A review. Neurolmage, 180, 577-593.
10.1016/j.neuroimage.2017.11.062



https://doi.org/10.1016/j.neuroimage.2017.11.062

EEG resting state
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We would like to see activity of subnetworks.

HD EEG, selected 6 channels in theta band. Attractor reconstruction using embedding:
[y(t),y(t=1),y(t-21),..., y(t=2nT7)].




EEG and brain activity patterns

Cz, beta band emb=4td=7eps= unthresholded tlmestamp 4.0 | Fz, beta b)and, emb = 4 td = 7 eps = unthresholded timestamp 4.0
- _ ( — . - — -

Synchronization of two channels in EEG resting state in several time windows.

Cz channel between 420-700 ms is desynchronized, but Fz participates in different
subnetworks. Metastable states last about 100 ms. Using fMRI 128 functional
networks of cognition/behavior have been identified but their dynamics is unknown.
Sung et al. (2018). A Set of Functional Brain Networks for the Comprehensive
Evaluation of Human Characteristics. Frontiers in Neuroscience, 12.



Spectral analysis

~ Sensor Space
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Spectral fingerprints === L= A AEE
Monitor EEG/MEG power spectra in 1 sec time JiE (YT = 3 D
windows, project them to source space of ROls
based on brain atlas, and create spectra.

A. Keitel & J. Gross. Individual human brain areas
can be identified from their characteristic spectral
activation fingerprints.

PLoS Biol 14, €1002498, 2016



Spectral fingerprints

Scatter Plot and Fitted Gaussian Mixture Contours

Single
subject

|
d e ROI

€

Precentral Gyrus (left)

* Pictures from Keitel & Gross 2016 and Fieldtrip Group model

A. Keitel, J. Gross, , Individual human brain areas can be identified from their
characteristic spectral activation fingerprints”, PLoS Biol 14(6), €1002498, 2016




Most reliable ROI, homologous < 1.5

MEG data from the Human Connectome Project (HCP) for 1200 subjects.

Some ROI can be recognized quite reliably.

If homologues are not distinguished we have 29 ROIs, many sub-cortical,
that can be reliably identified. Still working on EEG data ...



Spectral Fingerprint Challenges

Michat Komorowski

This method was tested for
MEG resting-state data,
will it work on EEG
recordings?

The brain contour
of neurofeedback

Feedback

Electrodes

External chains of the neurofeedback system

Amplifier

Source: O. R. Dobrushina et al. Front. Hum. Neurosci. 14, 2020

Can we extract features
that will be useful as
biomarkers for brain
disorders?

Can we do it in real time
for neurofeedback
applications?

Are linear constraint
minimum variance (LCMV)
sufficient?



EEG localization and reconstruction
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Spatial filters

LCMV (Linearly Constrained Minimum Variance), classical reconstruction filter is a
solution to the following problem:
K - lead-field matrix; @ — dipol positions, j—activation potential;, W — spatial filter

D=K()j+n, jxWd, WK(5)=

LCMV has large error if:

e sources are correlated,

* SNR (signal to to noise ratio) is low, or
e forward problem is ill-conditioned.

Minimum variance pseudo-unbiased reduced-rank for inverse problem, MV-PURE:
Piotrowski, Yamada, IEEE Transactions on Signal Processing 56, 3408-3423, 2008

= OargETmHWK(Q)—I H

where X is a set of all matrices of rank at most r, and set Y denotes all unitary norms.

We use 15000 vertex FreeSurfer brain tessellation together with brain atlases that
provide parcellation of the mesh elements into 100-240 cortical patches (ROls).



SupFunSim

SupFunSim: our library/Matlab /tollbox, direct models for EEG/MEG, on GitHub.

Provides many spatial filters for reconstruction of EEG sources: linearly constrained
minimum-variance (LCMV), eigenspace LCMV, nulling (NL), minimum-variance pseudo-
unbiased reduced-rank (MV-PURE) ...

Source-level directed connectivity analysis: partial directed coherence (PDC), directed
transfer function (DTF) measures.

Works with FieldTrip EEG/ MEG software. Modular, object-oriented, using Jupyter notes,
allowing for comments and equations in LaTex.

A:=Hgop =RH
B:=Hs. 5 :=N"”H

g8file calculate H Src.m
function model = calculate H Src(MODEL)
model = MODEL;

model.H Src R pinv(sgrtm(model.R)) * model.H Src;
model.H Src N pinv(sgrtm(model.N)) * model.H Src;

end

Rykaczewski, Nikadon, Duch, Piotrowski, Neuroinformatics 19, 107-125, 2021.


https://github.com/IS-UMK/supFunSim.git

Spectral fingerprints
HCP-RUN 2 N=88 HCP-RUN 2 N=88

Raw spectral modes in ROl 2: Precentra , = Raw spectral modes in ROI 11: Frontal_Inf_Oper_L

—1-T=25%
=2 - T=33

HCP-RUN 2 N=88

Raw spectral modes in ROl 1: Precentral_L
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Example of spectra showing modes of oscillation characteristic to precentral left and
right gyrus, and much more complex opercular part of inferior frontal gyrus.
MEG data from the Human Connectome Project (HCP).



fMRI and brain functions




Human connectome and MRI/fMRI

Node definition (parcelation)

Structural connectivity  Functional connectivity

Correlation
calculation

BOLD signal

Correlation
%oeql matrix

Many toolboxes available for such analysis. Bullmore & Sporns (2009)



Semantic neuronal space

Words in the semantic
space are grouped by
their S|m|I§r|ty. 3 Change
Words activate specific 2—%{ self
ROIs, similar words create

— Travel
similar maps - &
of brain activity. \tfp 2 &

. : : . e «
Video or audio stimuli,

fMRI 60.000 voxel).
Gallant lab, Berkeley.

[Semantic Space]
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http://gallantlab.org/huth2016/
http://gallantlab.org/huth2016/
http://gallantlab.org/huth2016/

voxel [22,32,57] left lII
=, model perjb.rm‘a’ce 0.278 (p=0.000) ull
pr = N P Not bad, pretty reliable
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http://gallantlab.org/huth2016/

voxel [24,51,68] left

model performance: 0.207 (p=0.000) =
Not bad, pretty reli

Whole fMRI activity map for the word “murder” shown on the flattened cortex.

Each word activates a whole map of activity in the brain, depending on sensory
features, motor actions and affective components associated with this word.
Why such activity patterns arise? Brain subnetworks connect active areas.

http://gallantlab.org/huth2016/ and short movie intro.
Can one do something like that with EEG or MEG?



http://gallantlab.org/huth2016/
../19/The%20brain%20dictionary-16.lnk

Simple activations for simple objects, colors, shapes, name, movement.



65 attributes related to
neural processes;

Colors on circle: general
domains.

J.R. Binder et al.

Toward a Brain-Based
Componential Semantic

Representation, 2016

More than just
visual objects!
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ASD: pathological connections

Comparison of connections for
patients with ASD (autism
spectrum), TSC (Tuberous
Sclerosis), and ASD+TSC.

Coherence between electrodes.
Weak or missing connections
between distant regions prevent
ASD/TSC patients from solving
more demanding cognitive tasks.

Network analysis becomes very
useful for diagnosis of changes due
to the disease and learning; correct
your networks!

J.F. Glazebrook, R. Wallace, Pathologies in functional connectivity, feedback control
and robustness. Cogn Process (2015) 16:1-16



Functional connections in healthy people

Healthy people, positive
and negative functional
connections in one of the
5 states of the

Deep Auto-Encoder (DAE) ,-.~ 0, %42 ¥
+ HMM models. 8T \\\ PO/
: \ S :
Connections |W|>0.65.
. ; I et = |__IPCUN(68)
Suk et al. Neuroimage ALy : cAL (40
.. N(’if‘:{."-.—' > - — = — *"‘—IL ';‘_jr‘ ;.J
P e

O _(1 -k.‘jﬁ' 3




Negative connections in MCI patients

MCI patients, positive

and negative functional
connections in one of the 5
states of the

Deep Auto-Encoder (DAE) +
HMM models.

Connections |W|>0.65.

CAL(43)

MCI patients have greater G
number of strong
connections but smaller

number of weak connections
due to compensation effects.

Suk et al. Neuroimage (2016)




Biomarkers from neuroimaging

Data Acquisition Image Preprocessing Feature Selection
(three sites in Japan)

v

2%

Model for ASD

SLR
L1-SCCA
ASD
(N=74) Models for other covariates
Demographic Medication
properties status

- . Time course from Correlation matrix
tfi’, each region among 140 regions

—
N=107 ‘ s 181 matrices with
( ) Per subject diagnostic labels
AUC = 0.93 =0.
a P=6.7x107" AsD © ADHD
| ¥ ’ N

(ASD)

Accuracy

N. Yahata et al, Psychiatry and Clinical Neurosciences 2017: 71




Biomarkers of mental disorders

Functional connectivity-based Recasting current nosology in more
classifiers for mental disorders biologically meaningful dimensions

OoCD
Normal —

(typlcally—developed) ASD
,/
Each axis represents proneness to

a specific disorder derived from the
corresponding FC-based classifier.

MDD, deep depression, SCZ, schizophrenia, OCD, obsessive-compulsive disorder, ASD
autism spectrum disorder. fMRI biomarkers allow for objective diagnosis.
N. Yahata et al, Psychiatry & Clinical Neurosciences 2017; 71: 215-237




Yuan .. Bodurka, 2015-21

Simultaneous EEG/fMRI

8 L4

Raw EEG Data [ Functional MRI Anatomical MRI

> 2 i
Artifact-free EEG [ Co-registered and
§ Global Field Power normalized fMRI
Temporally downsampled EEG ]

(microstates)

4§ Sourceimaging
EEG Cortical Sources I
& Alignment

Surface Aligned Cortical Sources ]
$§ Temporal ICA

Spatial ICA

EEG RSNs ) ( BOLD fMRI RSNs

N
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0 100 200 300 (s) 0 100 200 300 (s) ..
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Spatial Comparison & Temporal Correlation




14 networks from BOLD-EEG

DMMN hdEEG DAN hdEEG DSM hdEEG

-

DAMN fMRI

R0
T Y

AN fMRI MPN fMRI

ot Qi TEBF

t-score
|
min max

Spatial ICA, 10-min fMRI (N = 24). Networks: DMN, default mode; DAN, dorsal attention;
DSN, dorsal somatomotor; VFN, visual foveal; AN, auditory; MPN, medial prefrontal.
Liu et al. Detecting large-scale networks in the human brain. HBM (2017; 2018).




F| u |d nature Connectome Project

Development of brain in infancy: first learning how
to move, sensorimotor activity organizes brain network processes.

The Developing Human Connectome Project: create a dynamic map of human brain
connectivity from 20 to 44 weeks post-conceptional age, which will link together
imaging, clinical, behavioral, and genetic information.

Pointing, gestures, lead to connectome development in pre-linguistic children

(our BabyLab has a lot of EEG recordings).

Low-creative network

v “ Prefrontal

\ Temporal

Cerebellun

Brainstem



http://www.developingconnectome.org/

Hard problem = recruit more regions!

Two experimental conditions: 1-back, 2-back, 35 subjects, letter N-back.

Nod Anatomical Functional
def .g © parcellation ~ parcellation
Snnmon (90 nodes) (264 nodes)

Weigh’Fed Fisher’s

correlation TR
matrices

Binary Threshold

correlation (0.01-0.6)
matrices

v v
global efficiency | local efficiency |  modularity

Finc, Bonna, Lewandowska, Wolak, Nikadon, Dreszer, Duch, Kithn, Human Brain Mapping (2017).



Brain modules and cognitive processes

Simple and more difficult tasks, requiring
the whole-brain network reorganization.

Provincial hubs

Left: 1-back local hubs
Right: 2-back local hubs

Average over 35 participants.

Dynamical change of the landscape of
attractors, depending on the cognitive
load. Less local (especially in DMN), more
global binding (especially in PFC).

|| Fronto-Parietal (FP) |l Defauit Mode 0M) [l Cinguio-Opericuiar co) [Jl] Dorsal Attention (DA)

. Memory (MEM) . Ventral Attention (VA) I:I Auditory (AU) I:l Visual (VIS)
|| Somato-Motor (SOM) Salience (SA) Subcortical (SUB) [ ] other

K. Finc et al, HBM (2017).



Effect of cognitive load on info flow

Simple and more difficult tasks, requiring
the whole-brain network reorganization.

Connector hubs

Left: 1-back connector hubs
Right: 2-back connector hubs

Average over 35 participants.

Dynamical change of the landscape of
attractors, depending on the cognitive
load — System 2 (Khaneman).

DMN areas engaged in global binding!

|| Fronto-Parietal (FP) | ] Defauit Mode 0M) [l Cinguio-Opericuiar(co) [Jl] Dorsal Attention (DA)

. Memory (MEM) . Ventral Attention (VA) EI Auditory (AU) I:l Visual (VIS)
|| somato-Motor (SOM) Salience (SA) Subcortical (SUB) [ ] other

Finc, Bonna, Lewandowska, Wolak, Nikadon, Dreszer, Duch, Kiihn. Transition of the functional brain
network related to increasing cognitive demands. Human Brain Mapping 38, 3659-3674, 2017.



Working memory training

4]
-
o
[4))
=
| -
(O]
o
>
(11

B Default-mode network (DMN) Fronto-parietal network (FPN)

6-week training, dual n-back task, changes in module allegiance of fronto-parietal
and default-mode networks. Each matrix element represents the probability that
the pair of nodes is assigned to the same community.

Segregation of task-relevant DMN and FPN regions is a result of training and complex
task automation, i.e. from conscious to automated processing.



Working memory training

Experimental Control

Somato-Motor (SOM)
Subcortical (SUB)
Uncertain (UNC)
Ventral Attention (VA)
Visual (VIS)

b

{onsnejs 1) ebueyd esueibaje ainpopy

Experimental

o

x

*
III* |
II II....- 0

VA SAL DM CO AU FP SUB MEM VIS DA CER SOM UNC DM MEM SAL CER SOM VA FP UNC SUB DA CO ‘u"IS
System System

Whole-brain changes in module allegiance between the start and after 6-week of
working memory training.

(a) Changes in node allegiance as reflected in the two-tailed t-test.

(b) Significant increase * in the default mode DM, fronto-parietal ventral attention VA,
salience SAL, cingulo-opercular CO, and auditory systems AU recruitment.

Finc, Bonna, He, Lydon-Staley, Kiihn, Duch, Bassett, Nature Communications 11 (2020).

¥

Recruitment change (T stat.)
uitment change (T stat.)




Deaf vs. Control

Edge-wise functional
connectivity network
differences visualized in the

brain space.

(A). Connections that are

significantly stronger (red) Edges:

or weaker (blue) in deaf. <l

Edge thickness reflects
t-test statistic strength.

(B) N U m ber Of S|gn|ﬁca nt ; ‘ Large-scale networks:
. 3 B Auditory (AU)
edges between different . . S i
large-scale networks. PO
= - . Memory (MEM)
f— = ; Somato-Motor (SOM)
Red bands = edges stronger . =
in the deaf vs. hearing ~ | e Uncertan (UNG)

. Ventral Attention (VA)

control, blue bands with N | ‘ B Veus 953
weaker functional
connectivity.

Bonna, Finc et al. Early deafness leads to re-shaping of global functional connectivity
beyond the auditory cortex. Brain Imaging and Behavior 2020).



https://doi.org/10.1007/s11682-020-00346-y
https://doi.org/10.1007/s11682-020-00346-y

Deaf-Control

[l salience (SA)
Uncertain (UNC)

Fronto-Parietal (FP)

B Memory (MEM)
B Ventral Attention (VA)
Dorsal Attention (DA)

B subcortical (SUB)

B Auditory (AU)

B cingulo-Opercular (CO)
Somato-Motor (SOM)
Cerebellar (CER)

B Default Mode (DM)

B visual (vIS)

Reference Control

Modular organization of mean functional networks in deaf (left) vs control group
(right) and reference network division into large-scale brain systems (Power et al.,
2011). Salience nodes (black) are part of fronto-parietal (FP) module in the deaf
group but fall into multi-system (MS) module in the control group.
Ventral-attention nodes (dark green) are part of MS module in control group but in
deaf group they are part of default mode module (DM).



DecideNet

Does functional brain network organization during learning depend on prediction
error and reward / punishment context?

Experiment: 32 subjects in the fMRI (GE 3T) were tested on probabilistic reversal
learning (PRL) task, and after the session filled psychometric tests (Barratt
Impulsiveness Scale BIS-11, Specific Risk Taking Scale DOSPERT).

A A

o
RSy

NoO Yes
Prediction error

Questions (Kamil Bonna):

1) How functional orgnaization of brain networks
changes depending on prediction error in context

reward - loss

of reward or loss?

2) Can we notice changes in modular orgnaization of
networks?

3) Which other networks interact with networks
involved in predictions?



Beta series correlation

Investigation of inter-regional functional connectivity in event-related fMRI data, allows for
assessing the modulation of functional connectivity by an experimental condition.

Analysis requires many steps:

Power Atlas with 264 ROI parcelation,
plus 30 new ROIs from meta-analysis of
data, a total of 272 ROl +15 networks.

P Many corrections of signals, tresholding,
o denoising, tests of statistical significance.
The whole pipeline is on Github.

Regressors:

Options:

- high-pass
- standarization
- smoothing 6mn

B-map extraction (effect size, no t-stat, no z-score)

ey a/burs
S[ELI 34+
ol o g -..
My
fipdi
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Changes, 4 situations

7PE \VPE

reward
seeking

punishment
avoiding




Interactions with other networks

For each real network create set of random networks to serve as null distribution of
connection strengths between modules and compare real LSN <= LSN interactions with

null distribution. Mean was ~0.1, real interactions 0.47.

Entire task

visual 2 016 000 000 0.00 ) R 000 000 e 0.00

I P /'PE network interacts with:
0.00

uncertain 019 000 000 ) ) ) N 0.00 000 000 ¢ itself andN PE network
subcortical 013 03 . ) ) ) OGO 100 100 100 ° memory network

somatomotor 13 ] 100 100 100

* fronto-parietal network

o o0 100 O * default mode network
perr_dec .2 .2 ] ] M 0.00 0.00 000

mEmory .2 .2 .3 ) J ) 0.00 000

NI PE network interacts with:

fronta_parietal 115 12 12 .3 ) ) 000 000

2 | D * jtself and APE network
ot e SR B  ° memory network
o DT * fronto-parietal network
* dorsal attention network

fronto_parietal
default_mode

ventral_attention
dngulo_opercular



Network organization and its modular structure

Method: for 272 ROls
* for each network calculate modularity and community structure,
* compute consensus clustering (single representative partition).

reclustering

EEEE—

agreement matrix




Networks involved in making decisions

Networks
B 4 main LSNs contribute to PE networks:
e * visual network

* default mode network

default_mode

®* somatosensory network

uncertain s * tas k netwo rk

~—dorsal attention
—ventral_attention

o i
somatomaotor Vi P

cingulo_opercular -’ ®

= auditory

; CerEbE”ar m— -’-..-".-' . _
[perr=ine

:_*‘J.——f’ * NPE network is part of
isalience ; ° taSk network (71%)

fronto_parietl * default mode network (14%)

——memory.




Brain-Computer-Brain Interfaces

N\ 7 | External
Decode | AR\ | Controller

brain state —

L Wireless data : i
& power *

Recording
‘amplifier

Sense & Actuate

Record / Stimulate brain for

brain —='__ sensory feedback
signals r €

Closed loop system with brain stimulation for self-regulation.
Body may be replaced by sensory signals in Virtual Reality.



HD EEG/DCS?

EEG electrodes + DCS.

Reading brain states

=> transforming to common
space

=> duplicating in other brains
Applications:

depression, neuro-plasticity,
pain, psychosomatic disorders,
teaching!

Multielectrode DCS stimulation
with 256 electrodes induces
changes in the brain increasing
neuroplasticity.



Applications: GCAF/GIML

Jacek Matulewski: Gaze Controlled Application Framework (GCAF)
A platform to create applications that are controlled by direction of
gaze, for infants, babies and people with various disabilities.




GCAF/GIML

Jacek Matulewski: Gaze Controlled Application Framework (GCAF)
Designed to make life of medical care takers and psychologists easier.
Paralyzed people may control YouTube and other applications.

| |

3 ﬁ LL




Classification of EEG states (Marek G)

EEG data from our MSIT experiments (Multi-Source Interference Task) that activates
the cingulo-frontal-parietal cognitive/attention network (CFP network).

4 conditions, simple reaction times for MSIT (are digits 1, 2, 3

at match positions? Ex. 212 or 132), + 3 types of distractors.

110 electrodes at 129 time points (1 sec signal reduced to 128Hz).
Input vector 110x129=14190 dim, 12260 samples, 42 subjects.

4 types of deep convolutional neural networks applied to EEG
signal: EEGNet, DeepConvNet, ShallowConvNet and SyncNet.

Kernels for convolution in time and spatial filters.

Accuracy for two most distinct conditions is at the 73.4 + 4.8% level.
Accuracy for all 4 conditions is almost 40%.

Visualization of the features derived from
a cross-subject trained EEGNet-8x64-2-16
model with temporal kernel lenght 64
that coresponds to 500ms time window.
Each temporal filter is associated with

2 spatial filters. 2-class case, one CV fold.




HRV — Ewa R

HRV: beat-to-beat variations (R-R) in HR
results from ANS branches interplay.

Reflects bidirectional heart—brain interactions
reflects/determines mental states.

Increased via cardiorespiratory resonance between the
baroreceptor reflex (BRX) regulating blood pressure and
respiratory sinus arrhythmia (RSA) related to breathing
under volitional control via HRV-BFB (biofeedback).

QRS complex. QRS complex.,
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IMPROVING HUMAN DAILY LIFE FUNCTIONING.

NEURD “KATOR

VIRTUAL BR41N.1O
HACKATHON

——— 21 o any 23. §
B9 April 17-18, 2021 MAY 2021 //
during the OIN‘L! NE = .

Spring School 2021*

IEEE brcnn g @

"BRITLIZ and Spnng School 2020 are part of gec’s Tesching Plan 2031
writh e thar 160 hours of anlice courses and eclures,

e’

working 24h

1.Create a team consisting of 3-5 people.

1. PLACE WINNER

"NeuroBeat" 2.Fill in the Registration Form (available on Facebook event).
BCI application DO YOU HAVE ANY QUESTIONS?
Team members: Alicja Wicher, Joanna Maria Write an e-mail:
Zalewska, Weronika Sojka, Ivo John Krystian NEUROTECHTOR@GMAIL.COM
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Neurotechnology Scientific Club
Center for Modern Interdisciplinary Technologies
at Nicolaus Copernicus University in Torun
Wilenska 4 Street

Slawomir Duda


https://www.br41n.io/Spring-School-2021

2020 in our lab

Finc K, ... Bassett, D.S. (2020). Dynamic reconfiguration of functional brain
networks during working memory training. Nature Communications 11, 2435.

Esteban, O. ... Gorgolewski, K. J. (2020). Analysis of task-based functional MRI data
preprocessed with fMRIPrep. Nature Protocols 15, 2186—-2202

Thompson, W.H. ... Poldrack, R. A. (2020). Time-varying nodal measures with temporal
community structure: A cautionary note to avoid misinterpretation. Human Brain
Mapping, 41(9), 2347-2356.

Bonna, K ... Szwed, M. (2020). Early deafness leads to re-shaping of global functional
connectivity beyond the auditory cortex. Brain Imaging and Behaviour.

Asanowicz, D. ... Binder, M. (2020). The response relevance of visual stimuli modulates
the P3 component and the underlying sensorimotor network. Sci. Reports, 10(1), 1-20.
Rykaczewski, K. ... Piotrowski, T. (2020). SupFunSim: spatial filtering toolbox for EEG.
Neuroinformatics 19, 107-125

Dreszer J. ... Piotrowski T. (2020) . Spatiotemporal Complexity Patterns of Resting-state
Bioelectrical Activity Explain Fluid Intelligence: Sex Matters. Human Brain Mapping
41(17), 4846-4865.

Duch. W. (2020) IDyOT architecture - is this how minds operate? Physics of Life
Reviews, 34-35




Conclusions

Flexible Al should be based on brain principles, we need BICA
architectures. Simplified description of brain functions and processes is the key.
This is our GREAT challenge! Time to do something good!

Al/ML draws inspirations from brain research, but also neural network models and
learning algorithms (recurrence networks, reinforcement learning, capsule nets)
help to interpret information processing in the brain.

Neurodynamics is the key to understanding mental states.
Neuroimaging & analysis of EEG/MEG < helps to understand network
neurodynamics < interpretation, mental states: S(B) < S(M).

Although many things are still not well understood neurocognitive technologies
are coming, helping to diagnose, repair and optimize brain processes.
Great progress in EEG analysis has been achieved in recent years.

Potential of such methods is enormous, disorders of the brain are one of the
greatest burdens on the society in every country.



We have many interesting topics
in ML/neuro research.

Our group “Neuroinformatics and
Artificial Intelligence” in the
University Centre of Excellence in
Dynamics, Mathematical Analysis
and Artificial Intelligence (DAMSI)
is looking for students and visiting
professors, please see:

Grants
for experienced researchers
from abroad.

Grants for young researchers
from abroad.
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https://damsi.umk.pl/en/centre/neuroinformatics-and-artificial-intelligence/
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